If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(J)=J^2-8J+16
We move all terms to the left:
(J)-(J^2-8J+16)=0
We get rid of parentheses
-J^2+J+8J-16=0
We add all the numbers together, and all the variables
-1J^2+9J-16=0
a = -1; b = 9; c = -16;
Δ = b2-4ac
Δ = 92-4·(-1)·(-16)
Δ = 17
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$J_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$J_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$J_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{17}}{2*-1}=\frac{-9-\sqrt{17}}{-2} $$J_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{17}}{2*-1}=\frac{-9+\sqrt{17}}{-2} $
| 241=195-w | | O.75j-18=-3 | | 5*v=6*8 | | x^2-0.35x-0.65=0 | | V=x(16-2x)(30-2x) | | 3-2p=7p+4 | | G(x)=2x^2-3x+4 | | 18=-6(x+7) | | 25=9-8x | | 3x-15+5x-2=90 | | 7x-13+3x-25=180 | | x+(2x+40)+(3x-50)=15.002 | | 45-6v=3v | | r/4=1.5 | | 4x-9=-43 | | 4x^2+19x-360=0 | | 160x=60 | | 1/5+x=54 | | 8y=5y+10 | | 28+c=62 | | (4x)+(3x+25)+(3x+85)=360 | | (4x)+(3x+25)+(3x+85)=180 | | 130=15x=10 | | 24+6x=16+2x | | X*x+5x-2=11 | | 11x-18-12x=14 | | 15x-135=180 | | 92-(8x-4)=110 | | 92+(8x-4)=110 | | 3(2x-5+8x=5(2x+5) | | X*1.5=x+1.5 | | Y=4x+1/(1.5) |